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Multivariable Contrived Experiments

Contrived experiments are run to reveal the physical laws that control the observed phenomena.
Sometimes we may know, or think we know, the functional form of the law; in other cases we
don't, but we assume that there is indeed some law that controls the events.  We then
approximate the form of this law over a small range with an empirical relationship.  The
empiricism comprises an equation or equations that state how the observed phenomena will vary
depending upon physically measurable and controllable variables and unknown parameters.  A
very complete law (theory), such as the ideal gas law, may give the values of parameters (e.g.,
the gas "constant"), and our experiment could then have the purpose of testing the theory.  With
the gas absorption experiment, the observation is the mass-transfer coefficients, Kga, while the
independent variables are, at least, caustic concentration, flow rates, CO2 concentration, and
temperature.  There could be other variables, but we attempt to hold these as constant as
possible.

Think square
Statisticians have long known that it pays to run your contrived experiment such that the
variables that you wish to study and that are under your control (actually, or in principle) are
changed in some orthogonal pattern.  (The more-intuitive, hold-everything-constant-except-one-
variable approach is far more tedious variation of the orthogonal pattern, and may not even be
possible.)  The pattern of variation is called the experimental design.  The design also forces (if
followed) the technician to avoid confounding variables, that is, changing them both at once in
the same direction.  Thus, if you wish to study the effects of temperature and concentration on a
reaction, if both were raised and lowered together, you would not know which one was really
influencing the result.  Efficient designs thus have a combination of low-high, high-low etc.

Save time by design
In your design, imagine the variables plotted in space, and locate experimental conditions at the
extreme corners of this space, as far as is physically possible.  This gives maximum leverage for
determining the influence of each variable. If one has two variables to study (e.g., gas flow rate
and liquid flow rate) and can make only 4 runs, then Design A will give more precise results than
Design B.
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Intuitively, one would think that it would be necessary to hold all variables exactly constant and
vary only one at a time, but this is not the case as long as the variables are included in the
proposed model.  Also, in real life, variables can be hard to control exactly.  The caustic
concentration in the gas absorption experiment is an example.  Some students feel they must hold
a variable constant, and end up assuming that it is constant, rather than measuring it accurately.
For example, setting gas flow in the gas absorption column to exactly 60 L/min really can't be
done.  Don't try!!  However, do record the meter reading accurately when your sample is taken.
This may require several readings if the meter is "noisy."  When the dependent variable is
observed and recorded, one run is complete.

Random is better than orderly
While one can plan to avoid confounding independent variables, it is easy to confound known
variables with ones that you don't anticipate.  For example, it would be a very risky plan to vary
flow rate monotonically from low to high as the experiment progresses.  Why?  You may not
know why, but one possibility is that the temperature of the run may simultaneously increase, or
the analysis technique drifts.  Thus one executes the planned runs in a random order, so that
these unknown effects appear as random error (along with all the other random errors, such as
misreading a gauge).  This technique is called blocking.

Enter the model and the computer
The problem with the approach recommended above is that one has to do something with data
that is gathered under all combinations of conditions.  It looks like a mess.  Fortunately, tools are
available on every spreadsheet to untangle the mess.  The most useful to everyday engineers is
multivariable modeling.  The model refers to the law or empiricism mentioned earlier.  It is
usually (hopefully?) an algebraic equation featuring the dependent variable (it's great if this can
be all alone on the left-hand side of the equation, but such is not necessary), the independent
variables, the unknown parameters, and perhaps a few constants (constants, in this context, are
real constants like π = 3.14159…).  If you can't find an equation to use, you will have to make
one up.  Use some sense: make it physically realistic, or at least defined over the entire possible
range of the independent variables.

If the variable range is small, then one might assume that the real law governing the phenomena
can be expanded in a Taylor series.  For example, we might argue that the law (known only to
the divine, and perhaps a few professors) for mass transfer in a packed bed could be expanded as:

LVaK g 210 βββ ++= (1)

where Kga is the mass transfer coefficient, V is the gas flow rate, and L is the liquid flow rate.
The β's are the Taylor coefficients, and they become our unknown parameters.  A slightly more
sophisticated model would be
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which incorporates the concentration of NaOH (C) as a variable.  It also introduces the
possibility of curvature with no more parameters.
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Empiricism vs. Theory
So what good is this?  It certainly does not give us the real theory (although the result might help
the theorist).  However, it does tell us if V and L are influencing the mass transfer, and it may
give us a design equation for the column to predict the performance of a plant.  It may permit us
to compare our results with similar experiments reported in the literature.  But best of all, it
allows us to do something with the messy data from an experiment and end up with a positive
result.
Let's try out Eq. 2 on some real data.  These data are appended.  Note that the group getting this
data was trying the OVAAT approach.  Plotting Kga vs V at constant liquid flow rate L is
attempted in Figure 1, but the results are not very informative because the other variables are
having a huge effect or there is too much error.  It looks like the experiment is a failure.

Figure 1.  Mass-transfer coefficients for absorption of CO2 into NaOH solution in packed column.

However, application of Eq. 1 gives the following results:

Model Equation(s):
    KGA=A0 *V^A1*L^A2 *C^A3

Parameter: A0= 0.0029220426
95 % Confidence Interval
                           LOW:   -0.0018247393
                           HIGH:    0.0076688245

Parameter: A1= 0.34756350
95 % Confidence Interval
                           LOW:     0.016897327
                           HIGH:      0.67822967

Parameter: A2= 0.40309582
95 % Confidence Interval
                           LOW:      0.16198528
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                           HIGH:      0.64420636

Parameter: A3= 0.28802167
95 % Confidence Interval
                           LOW:      0.11818315
                           HIGH:      0.45786019

The coefficients appear to all be significant, as their 95% confidence intervals are positive
(although large).  The reason that we are able to achieve this result is that there is an adequate
quantity of data which has "overcome" the scatter in the data.  To get a picture of the scatter, we
plot the mass-transfer coefficients that are predicted by the model against the observed
coefficients (or the other way).  The result, shown in Figure 2, can be helpful in looking for
regions where the model is not working well.

One must be careful about the logic of the problem.  By fitting the model to the 16 data points,
we are assuming that the points are independent, that is, there is no more relationship between
any two points than there is for any two others.  On examining the data set, it is clear that the
data were taken at fixed L and V as the NaOH was depleted during a single run.  Thus is could
be argued that there are only 5 independent observations.  In making this decision, it is important
to know the sources of error and their magnitude.  The titration analysis is a source of
considerable error and is run independently, to a large extent, on each sample drawn from the
column.

Units: mol/(m3-atm-s)
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Figure 2.  Application of multivariable analysis of mass-transfer coefficients with liquid flow rate (L),
gas flow rate (V) and NaOH concentration (C) as factors.  (See text for values of coefficients ai )
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APPENDIX.  Data for above examples:

L, L/min  V,L/min  [NaOH]  Kga,mol/m^3-atm-s
  2         42    0.07844    0.008715
  2         42    0.05088    0.007676
  4         63    0.09434    0.010718
  4         63    0.04240    0.009945
  4         63    0.02544    0.007824
  8         42    0.13992    0.014966
  8         42    0.10494    0.011360
  8         42    0.06254    0.007416
  6         84    0.09116    0.016666
  6         84    0.06148    0.014182
  6         84    0.02332    0.008802
  6         84    0.00742    0.007577
  2        122    0.106      0.010727
  2        122    0.08798    0.008837
  2        122    0.06784    0.007932
  2        122    0.04558    0.00705


